Hankel Operators and the Dixmier Trace on Strictly Pseudoconvex Domains

نویسندگان

  • Miroslav Englǐs
  • Genkai Zhang
  • Patrick Delorme
  • M. Englǐs
  • G. Zhang
چکیده

Generalizing earlier results for the disc and the ball, we give a formula for the Dixmier trace of the product of 2n Hankel operators on Bergman spaces of strictly pseudoconvex domains in C. The answer turns out to involve the dual Levi form evaluated on boundary derivatives of the symbols. Our main tool is the theory of generalized Toeplitz operators due to Boutet de Monvel and Guillemin. 2000 Mathematics Subject Classification: Primary 32A36; Secondary 47B35, 47B06, 32W25

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toeplitz and Hankel Operators and Dixmier Traces on the unit ball of C

We compute the Dixmier trace of pseudo-Toeplitz operators on the Fock space. As an application we find a formula for the Dixmier trace of the product of commutators of Toeplitz operators on the Hardy and weighted Bergman spaces on the unit ball of C. This generalizes an earlier work of Helton-Howe for the usual trace of the anti-symmetrization of Toeplitz operators.

متن کامل

Schatten Class Hankel Operators on the Bergman Spaces of Strongly Pseudoconvex Domains

In this paper, we characterize holomorphic functions / such that the Hankel operators Hj are in the Schatten classes on bounded strongly pseudoconvex domains. It is proved that for p > In , Hj is in the Schatten class Sp if and only if / is in the Besov space Bp ; for p < In , Hj is in the Schatten class Sp if and only if / = constant.

متن کامل

BMO ON STRONGLY PSEUDOCONVEX DOMAINS: HANKEL OPERATORS, DUALITY AND a-ESTIMATES

We study the condition that characterizes the symbols of bounded Hankel operators on the Bergman space of a strongly pseudoconvex domain and show that it is equivalent to BMO plus analytic. (Here we mean the Bergman metric BMO of Berger, Coburn and Zhu.) In the course of the proof we obtain new d -estimates that may be of independent interest. Some applications include a decomposition of BMO si...

متن کامل

Compactness of Hankel Operators and Analytic Discs in the Boundary of Pseudoconvex Domains

Using several complex variables techniques we want to investigate the interplay between the geometry of the boundary and compactness of Hankel operators. Let β be a function smooth up to the boundary on a smooth bounded pseudoconvex domain Ω ⊂ C. We show that if Ω is convex or the Levi form of bΩ is of rank at least n − 2 then compactness of the Hankel operator Hβ implies that β is holomorphic ...

متن کامل

Hankel Operators and Weak Factorization for Hardy-orlicz Spaces

We study the holomorphic Hardy-Orlicz spaces H(Ω), where Ω is the unit ball or, more generally, a convex domain of finite type or a strictly pseudoconvex domain in C. The function Φ is in particular such that H(Ω) ⊂ H(Ω) ⊂ H(Ω) for some p > 0. We develop for them maximal characterizations, atomic and molecular decompositions. We then prove weak factorization theorems involving the space BMOA(Ω)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009